Solución de la ecuación de Colebrook-White, con métodos numéricos.


En 1845, Darcy-Weisbach dedujeron experimentalmente una ecuación para calcular las pérdidas por cortante (“Fricción”), en un tubo con flujo permanente y diámetro constante (Ver Ec. 1), en la ecuación propuesta todos los datos eran conocidos excepto uno al que se le llamó factor de pérdidas (f).
$$hf=f\frac { L }{ D } \frac { { V }^{ 2 } }{ 2g } $$
Dónde: hf: pérdidas por cortante o fricción (m); f: factor de pérdidas por cortante o por fricción (adimensional); g: aceleración de la gravedad (m2/s); D: diámetro del tubo (m); L: longitud del tubo (m) y V: velocidad media en el tubo (m/s).

Muchos son los investigadores que comenzaron a estudiar el fenómeno para poder encontrar una expresión que permitiera calcular la famosa f, entre ellos se encuentran Colebrook-White:
·         En la región laminar Poiseuille propuso en 1846 la siguiente ecuación:
$$f=\frac { 64 }{ Re } $$
·         En régimen turbulento, normalmente se usa la ecuación de Colebrook-White.
$$\frac { 1 }{ \sqrt { f } } =-2\log { \left[ \frac { \frac { \varepsilon }{ D } }{ 3.71 } +\frac { 2.51 }{ Re\sqrt { f } } \right] } $$ 
$$Re=\frac { V\quad D }{ \upsilon }$$
DondeRe: Número de Reynolds (Adimensional); ε: Rugosidad absoluta (m); ε/D Rugosidad relativa; viscosidad cinemática del fluido (m²/s); 
La ecuación de Colebrook-White se obtiene de las dos ecuaciones de Nikuradse: 
$$\frac { 1 }{ \sqrt { f } } =-2log\quad \left( \frac { \frac { \varepsilon }{ D } }{ 3.71 } \right) $$
y
$$\frac { 1 }{ \sqrt { f } } =-2log\quad \left( \frac { 2.51 }{ Re\sqrt { f } } \right) $$
donde la primera es válida para tubos rugosos con flujo turbulento totalmente desarrollado y la segunda es válida para tubos lisos en régimen turbulento. De tal suerte que al combinarlas se tiene la expresión de Colebrook-White (Guerrero, 1995)

La ecucación de Colebrook-White está basada en estudios experimentales en tuberías comerciales e incluye consideraciones teóricas de los trabajos de von Karman y Prandlt, misma que el propio Lewis F. Moody (1944) afirmó que arrojaban resultados satisfactorios, ya que contempla tuberías lisas y rugosas, de la cual se origina el conocido Diagrama de Moody para obtener de manera gráfica factores de fricción. Lo anterior convierte a la correlación de CW en una ecuación estándar y la más aceptada para la estimación del factor de fricción a régimen turbulento y para rugosidad relativa (0 < ε/D < 0.05) (Anaya-Durand et al., 2014). como se observa en lexpresión de Colebrook-White, es imposible resolver analíticamente (despejar el valor de  f), por tanto para conocer este valor debemos recurrir a métodos numéricos y hallar de una forma aproximada dicho valor. En este caso se determinará con el método de Bisección. 

El método de bisección tiene como característica principal que se debe definir un intervalo en donde posiblemente se encuentre nuestro valor buscado, si el valor buscado no se encuentra dentro de este intervalo la función no convergerá. El intervalo a usar, para este caso, es de [0, 10], el límite inferior igual a cero es porque no tiene caso que nuestra f sea negativa, y el límite superior es 10 debido a que no es posible que se tengan valores de f muy grandes, incluso podemos definir nuestro límite superior igual a 1 para tener el intervalo [0,1]. A continuación se muestra un pseudocodigo para determinar el coeficiente de fricción (f) de la expresión de Colebrook-White usando el método de bisección:

Pseudocodigo

Algoritmo Hf_HW
 Definir Re, e, D, A, B, FA, FB, F, C Como Real
 Leer Re //Número de Reynolds (Adimensional)
 Leer e //Rugosidad Absoluta (m)
 Leer D // Diámetro (m)
//Definir intervalo en donde se buscara el valor de f [A,B]
 A = 0.0 //Intervalo inferior
 B =10 //Intervalo superior
//Inicia ciclo
 Repetir
  C = (A+B)/2 // calculamos C [Sera el valor del coeficiente f]
  FA=1/rc(C) // Evaluamos la ecuación antes del igual con el valor de C.
  FB =-2*ln((e/D)/3.71+2.51/(Re*rc(C)))*0.434294481903252 // // Evaluamos la ecuación despues del igual con el valor de C. Se multiplica el logaritmo natural por el número 0.43429 para convertir el logaritmo natural en log10
  F = FB-FA
  Si F> 0 Entonces
   B= C
  Sino
   A=C
  FinSi
 Hasta Que abs (F) menor o igual a 0.00001
 Escribir 'El Factor de Friccion es: ',C
FinAlgoritmo

Matlab code

% Programa que calcula el coeficiente de Fricción
% para la fórmula de HW.
clear;
% re=input('Número de Reynolds (Adim.): ')
% e=input('Rugosidad Absoluta (m): ')
% d=input(' Diámetro (m): ');
re=300000; % Número de Reynolds
e=0.0002;    % Rugosidad Absoluta
d=0.7;          % Diámetro interno
% proponemos valores de a y b
a=0.0;
b=10;
% Proponemos un valor de f inicial para que entre al ciclo
f=1;
while abs(f)>0.00001
    % Calculamos el valor de C
    c=(a+b)./2;
    % Evaluamos en C
    fa=1/sqrt(c);
    fb=-2*(log((e/d)/3.71+2.51/(re*sqrt(c))))*0.434294481903252000;
    f=fb-fa;
    if f>0
        b=c;
    else
        a=c;
    end
end
fprintf('Factor de Pérdida de carga =%8.9f \n', c).

De esta forma podemos hallar el coeficiente de fricción de la expresión de Colebrook-White y usarlo en la ecuación de Darcy-Weisbach. 
Si desea calcular el valor de f, debe ingresar los valores solicitados en el siguiente formulario.

---Datos a ingresar-----
Gasto o Caudal(lps):

Diámetro interno tubería (mm):

Rugosidad Absoluta (mm)

viscosidad cinemática del fluido (m²/s)

---------Resultados-------------
Factor de Fricción (Adimensional) :

Número de Reynolds (Adimensional)

Velocidad del flujo (m/s)
Area Tubería (m²) :



Les dejamos esta infografia donde se muestra el proceso de manera resumida. No olvides compartirla




Literatura citada

Anaya-Durand, A. I., Cauich-Segovia, G. I., Funabazama-Bárcenas, O., & Gracia-Medrano-Bravo, V. A. (2014). Evaluación de ecuaciones de factor de fricción explícito para tuberías. Educacion Quimica. https://doi.org/10.1016/S0187-893X(14)70535-X

Guerrero Angulo, J. O. (1995). Ecuación modificada de Colebrook-White. Ingeniería Hidráulica En Mexico, 10(1), 43–48.

Moody, L. F. (1944). Friction factors for pipe flow. Transacctions of the American Society of Mechanical Engineers, 66, 671–678.



Entradas más populares de este blog

Combinación RGB con bandas del satélite Landsat 5, 7 y 8

Programas y herramientas para diseñar sistemas de riego presurizados

¿Cuál fórmula seleccionó para el cálculo de la pérdida de carga por fricción en tuberías?

Pérdida de carga por fricción en "Tuberías con salidas múltiples"

Títulos de concesión de agua: ¿Qué son? y sus características

Descargar datos del sistema NASA-POWER para estimar Evapotranspiración de Referencia

¿Qué régimen tengo en un canal o río : Subcrítico, Crítico o Supercrítico.?

Google Earth Engine en Ingenieria de Riego

Aplicación Móvil para diseñar canales de riego